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ABSTRACT

Preliminary design failure rate predictions tend to be

rough approximations due to a lack of sufficient information

about components, materials, requirements, etc.. Often,

experienced engineers can give a qualitative assessment of the

possible failure rate of a given design, but have a difficult

time quantifying that assessment without the aid of historical

data, mathematical equations, or computers. It would be much

easier if the experienced engineers judgement or verbal,

qualitative, evaluations could be converted to quantitative

estimates?

Fuzzy-set theory provides a method to convert qualitative

or subjective evaluations into quantitative ones.

This work looks at how fuzzy-set theory can be used to

convert qualitative evaluations of factors affecting failure

rates into quantitative estimates of failure rates. By using

fuzzy estimates of the environment and design effects on

failure rate, data is generated by the fuzzy failure rate

prediction method.

The data generated by this method compares favorably with

the data source, MIL-HDBK-217E, Reliability Prediction of

Electronic Equipment.



iv

ACKNOWLEDGEMENTS

I would like to express sincere appreciation to my

advisor Dr. Cihan Dagli and the other members of my committee,

Dr. Henry Metzner and Dr. Kelvin Erickson for their support in

completing this project. I would also like to thank Dr. Dagli

for his patience during my futile search for actual field

reliability data on missile systems in sufficient detail to

accomplish this study. I would also like to thank Dr. Metzner

for his guidance on analysis methods and data needed for a

reliability study.

I especially want to thank the Air Force for giving me

the opportunity to attend graduate school at the University of

Missouri-Rolla (UMR).

Most of all I would like to thank my wife, Sheila,

daughter, Valerie and son, Michael who have endured my many

long days and nights of studying. It is their love and

support, that has allowed me to complete my degree and enjoy

my studies at UMR.



v

TABLE OF CONTENTS

Page

ABSTRACT ................... ...................... iii

ACKNOWLEDGEMENTS ............... ................... iv

LIST OF ILLUSTRATIONS .......... ................ vii

LIST OF TABLES ............... ................... viii

SECTION

I. INTRODUCTION ................ ................. 1

A. RELIABILITY PREDICTION OVERVIEW ..... 1

B. FUZZY LOGIC INTRODUCTION ........ ......... 2

II. LITERATURE REVIEW ......... ..... ............... 5

A. RELIABILITY PREDICTION LIMITATIONS . . . . 5

B. APPLICATIONS OF NEURAL NETWORKS AND FUZZY
SYSTEMS ................. .................. 6

1. Backpropagation Neural Network .... ..... 7

2. Fuzzy Associative Memory (FAM) .... ..... 9

III. INITIAL INVESTIGATION WITH BACKPROPAGATION NEURAL
NETWORK ................. .................... 13

A. INTRODUCTION ............ ............... 13

B. DATA DEFINITION ......... .............. 14

C. NETWORK DEFINITION ........ ............ 15

D. NETWORK TRAINING ........ ............. 16

E. RESULTS ............... .................. 17

F. OBSERVATIONS ............ ... ............... 21

IV. THE FUZZY MODEL ........... ................ 24

A. FUZZY KNOWLEDGE REPRESENTATIONS ...... 24

B. SHAPES OF THE FUZZY-SETS .... ......... 26



vi

Page

C. BIOFAMs CORRELATION-MINIMUM INFERENCE. 30

D. BIOFAM DEFUZZIFICATION ...... .......... 36

E. MODEL SUMMARY ........... ............... 38

V. TESTING, RESULTS AND FUTURE WORK .. ....... 40

A. EARLY MODEL DESIGN RESULTS .... ........ 40

B. CURRENT MODEL RESULTS ....... ........... 42

C. FOLLOW-ON STUDY SUGGESTIONS ... ........ 44

VI. CONCLUSION ................ .................. 46

APPENDICES

A. BACKPROPATGATION DATA: TABULAR LISTINGS . . .. 48

B. MIL-HDBK-217E DATA ........... .............. 55

C. HISTOGRAM OF TABLE XIII DATA ... ......... 58

D. COMPARISON OF MODEL DATA TO MIL-HDBK-217E DATA 60

E. PASCAL PROGRAM FOR FUZZY FAILURE RATE
PREDICTION ............... .................. 62

F. DATA FILES USED BY THE MODEL ...... ......... 73

BIBLIOGRAPHY .................. ..................... 75

VITA ....................... ......................... 77



vii

LIST OF ILLUSTRATIONS

Figure Page

1 Backpropagation Neural Network Architecture. ... 8

2 Fuzzy-Sets for Environment .... ............ 28

3 Fuzzy-Sets for Design ....... ............... .. 29

4 Failure Rate Fuzzy-Sets Part 1 ............. .. 32

5 Failure Rate Fuzzy-Sets Part 2 ............. .. 32

6 Failure Rate Fuzzy Sets Part 3 .... .......... .. 33

7 Correlation-Product Encoding of FAM Rule 8. . 33

8 Correlation-Product Encoding of FAM Rule 13. ... 34

9 Fuzzy Centroid Determination (Defuzzification). 35

10 Histogram of Table XIII Data .... ........... .. 59



viii

LIST OF TABLES

Table Page

I Training tolerance levels achieved .......... .. 17

II Comparison of network output to expected output for
the network trained to an error tolerance of 0.1. 19

III Comparison of expected output to network output for

data sets giving the log of the expected output. 20

IV Linguistic variables for environment effects. . 25

V Linguistic variables for design ............. .. 25

VI Linguistic variables for failure rate ......... .. 26

VII Matrix of FAM rules ....... ................ 27

VIII 70 item raw data set ........ .............. 49

IX 16 item raw data set ........ .............. 52

X 14 item data set with 100,000 and higher MTBFs
removed ............... ...................... 53

XI 16 item data set with zeros changed to 0.2 and
output is log of desired number ............. .. 54

XII MIL-HDBK-217E environment abbreviation

definitions ............. .................... 56

XIII Generic failure rates for MOS dynamic RAMs...... 57

XIV Comparison of model failure rate predictions to
Table XIII .............. ................... 61



I. INTRODUCTION

A. RELIABILITY PREDICTION OVERVIEW

A typical failure rate prediction for an electronic

component would involve going to an electronic component

failure rate reference such as MIL-HDBK-217E, Reliability

Prediction of Electronic Equipment, tinding factor values for

things like environment and quality, finding a base failure

rate, determining how many elements make up the component,

then putting the appropriate numbers into an equation

developed for that particular component type. This would

involve finding 3 or 4 tables from hundreds.

The example above points out one of the limitations of

reliability predictions, the mechanics of the process. The

part stress analysis method, the primary method of prediction

used in MIL-HDBK-217E, requires a great amount of detail. This

detail imposes a time and cost penalty. More importantly,

these details are usually not available in the early design

stages. Therefore, a simpler method is also covered, the parts

count method[l].

Reliability predictions of components and systems are an

essential step in the design process. These predictions

provide the rationale for decisions on alternate design paths,

part quality choices, levels of derating, level of redundancy,

choosing between using proven technology and equipment versus

new or state-of-the-art technology and equipment, and other
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design and development related issues[2]. But what do these

predictions really tell us?

Fe--±abilit' as been defined as the probability that a

niroduct performs its intended function for a stated period of

time under specified operating conditions. This means that it

is a quantitative assessment based on the measure of two

quantifiable characteristics, time and operating

conditions[3].

A great deal of work has gone into defining the effects

of design variations and operating conditions on reliability.

Much of this work is published in a number of military

standards, military handbooks, and other government documents.

These works provide engineers with the history needed to make

predictions about the failure rates of various products and

designs with little if any need for engineering judgement. In

many engineering applications, however, it is difficult to

evaluate the probabilities and consequences from past

experiences, because of the dynamic environments of systems,

and especially because there are situations where past

experience does not exist[4]. In these cases, judgement and

expertise can play an important role in reliability

prediction.

B. FUZZY LOGIC INTRODUCTION

Judgement inherently contains a level of uncertainty.

Engineering analysis is also subject to uncertainties[5]. In

reliability analysis these uncertainties exist in the
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estimates of operating conditions, variations in historical

failure rates, cycle times, and quality of the design. Experts

can qualitatively define uncertainties, such as higher or

lower, but have a difficult time quantifying these terms.

The key elements of human thinking are not numbers but

labels of fuzzy-sets[ii]. Humans are more efficient in

Quciitative evaluation than in quantitative analysis. The

knowledge of an experienced reliability engineer usually

consists of qualitative variables stated verbally. If forced

to give numerical estimates, humans tend to get biased because

they are taxed to operate in a mode which requires more mental

effort and guessing. Fuzzy-set theory makes it possible to

quantify and manipulate qualitative statements, vagueness, or

subjectivity of opinion[7]. It would be much easier to

develop preliminary design failure rate predictions using

expert judgement rather than going through all the tables and

calculations in the failure rate handbooks?

Fuzzy-set theory provides the method to convert

qaalitative judgements to quantitative estimates of failure

rates. By combining the judgement of the engineer and fuzzy-

set theory, we can account for the uncertainties of

reliability prediction. Then, through the use of a computer

program, predictions can be generated easier and enhance the

application of the reliability prediction to varying

conditions.

Therefore, the fuzzy apprnach to the example in the

opening paragraph would be to ask the engineer for a
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linguistic evaluation of the environment and quality, apply

that evaluation to the fuzzy-sets associated with environment

and quality, and determine a factor to apply to the base

failure rate. This method provides the basis for this study.

An industry standard on electronic failure rate

prediction, MIL-HDBK-217E, contains data in the format just

described. The model developed here predicts failure rates for

metal oxide semiconductor, dynamic random access memory (MOS,

DR,1M) chips with values that are quite close to those

developed in MIL-HDBK-217E.

In the next section, similar work conducted in related

areas will be reviewed. First, some of the reliability

predictions limitations will be discussed. Then, the

development of fuzzy-sets in similar applications will be

examined. In Section III, the results of an earlier attempt to

model failure rates with a backpropagation neural network will

be reviewed. Section IV will describe the fuzzy associative

memory (FAM) model. Finally, the results and observations of

the fuzzy approach to failure rate prediction will be

presented along with suggestions for further research in this

area.
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II. LITERATURE REVIEW

A. RELIABILITY PREDICTION LIMITATIONS

Reliability predictions provide a qualitative assessment

of how well a given design will perform its intended function

under some specified conditions. This assessment can be used

to evaluate proposed design changes, define special

environmental control limits, identify special maintenance or

handling procedures, evaluate the significance of reported

failures, or to perform other engineering analyses. Like any

engineering tool, reliability predictions must be used

intelligently, with consideration given to their

limitations[l].

One limitation is that failure rate models are point

estimates, based on the best data available at the time of the

predictions. Therefore, they are only valid for the conditions

under which they were developed, and only for the product

analyzed. Some extrapolation is possible, but the empirical

nature of the models severely limits the degree to which data

can be extrapolated[l].

Another limitation is the dynamic nature of electronic

technology. The rapid growth of new electronic devices and

processes make reliability predictions increasingly more

difficult. This requires continual change or improvement in

prediction methods and procedures. As an example, a

revolutionary design may defy current prediction methods

requiring a revolutionary prediction technique.
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The final limitation is reliance of reliability

predictions on correct application by the user. A correctly

applied reliability prediction and reliability model will be

a very useful tool for an engineer. If the user of the

reliability prediction is only concerned about a reliability

number, he will usually find a way to achieve it, without any

impact to the system in questionfl)]. This is of little benefit

to the engineer, the company, or the product.

Given these limitations, we have to ask if there is

mathematical method other than classical statistics that could

provide reliability predictions quickly and easily when these

limiting conditions change. Two areas worth studying are

neural networks and fuzzy-set theory.

B. APPLICATIONS OF NEURAL NETWORKS AND FUZZY SYSTEMS

Neural networks and fuzzy systems estimate functions from

sample data as do statistical and artificial intelligence (AI)

approaches. For each problem, statistical approaches require

one to guess how outputs functionally depend on inputs. Neural

and fuzzy systems do not require a mathematical model, as

such, and are model-free estimators[8].

Neural networks can be embedded in the mathematical

fields of dynamical systems, adaptive control, and statistics.

Adaptive neural algorithms have been used in high-speed

modems, long-distance telephone calls, and some airport bomb

detectors. Fuzzy theory overlaps with the neural network

fields and with probability, mathematical logic, and measure
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theory[8]. Since the introduction of fuzzy-set theory by Lotfi

Zadeh in 1965[9], fuzzy systems have been adopted for use in

running subways, tuning televisions and computer disc heads,

focusing and stabilizing camcorders, adjusting air

conditioners and washing machines, defrosting refrigerators,

scheduling elevators and traffic lights, and controlling

automobile motors, suspensions, and emergency braking systems.

1. Backpropagation Neural Network. Two of the primary

applications of neural networks are situations where only a

few decisions are required from a massive amount of data and

situations where a complex nonlinear mapping must be

learned[101. This study was looking for a complex nonlinear

mapping. The investigation into a neural network failure rate

prediction was conducted using a backpropagation neural

network. The backpropagation neural network consists of a

number of parallel distributed processing elements, all

interconnected as shown in Figure 1. This network consists of

3 or more layers of processing elements. The backpropagation

neural network is a heteroassociative, function-estimating

artificial neural system that stores arbitrary analog spatial

pattern pairs (Ak,C ), k = 1,2,... m, using a multilayer

gradient descent error-correction encoding algorithm, where

the kth pattern pair is represented by vectors Ak = (a,', . . ank)

and Ck = (cik ,..... cf) [10] . Where the A, vector is the input

to the network, and the C, vector is the output. In other
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words, a backpropagation network which is properly trained,

can read an input Ak or close to Ak and provide an output Ck.

€ik Ci k Cq k

W ll Wit " . j <i _pW pf2 W

bjl Vn ... p bi V . . . 1 bP

V

alk aik 2n k

Figure 1 Backpropagation Neural Network Architecture.

The initial investigation tried to correlate the number

of active elements to the mean-time--between-failure (MTBF) in

electronic equipment. The thought behind this approach is that

the failures are not random, but nonlinear, and therefore, a

backpropagation network could learn or estimate a function

that would match that of the failures. The data analyzed came

from a Reliability Analysis Center document, Electronic

Equipment Reliability Data[ll]. This approach was a limited

attempt to develop a failure rate model for electronic systems
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that resulted in limited success. The results of this study is

presented in Section III.

2. Fuzzy Associative Memory (FAN). Mathematical models

are never totally exact and accurate. This is because one does

not know the true values of the numerical parameters for the

problems. One reason one does not know the values for these

reliability models is material, processes and environmental

conditions change so rapidly that not enough field data can be

collected for a thorough study of the failures. One of the

main difficulties with failure rate models is once one knows

the detailed physics well enough to model it, one generally

knows enough about the problem to cure it. Therefore, the

reliability problems dealt with in practice tend to be ones

that are not well modeled(12].

Fuzziness can be viewed as an alternative to randomness

for describing uncertainty. An element belongs to a

multivalued or "fuzzy" set to some degree in the range of real

numbers from 0 to 1. Ar. element belongs to a nonfuzzy set one

hundred percent or zero percent, 1 or 0. Fuzziness measures

the degree to which an event occurs, not whether it occurs.

Randomness describes the uncertainty of the fact an event will

occur or an event will not occur. Whether an event occurs is

random and the degree to which an event occurs is fuzzy[8].

One routinely uses fuzzy measures in everyday existence:

fast computers, small errors, big trees, partly sunny, almost

home, weak batteries. One understands that these terms or
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phrases have gray areas where the opposite or converse is also

true. Engineers use fuzzy measures also when verbally

evaluating designs: very good, weak, robust, bad. If these

evaluations can be converted into numerical values, we

quantify engineering expertise and judgement. Fortunately,

fuzzy-set theory provides the method for converting these

linguistic fuzzy values into deterministic ones. The ability

to go from a fuzzy measure to a deterministic value has

spawned a number of papers on the application of fuzzy-set

theory.

There are only a couple papers available that address the

use of fuzzy sets with reliability predictions. In 1988, Kubic

and Stein addressed chemical process reliability and

unreliability using fuzzy sets to determine several factors

used to control benzene-toluene distillation[5). They

concluded that fuzzy reliability and unreliability can mimic

the decision process of an engineer and can be used to

distinguish between feasible designs, those with high

reliability and low reliability; infeasible designs, those for

which the opposite is true; and promising designs, designs

which are economically desirable but, reliability and

unreliability values are nearly equal.

An earlier paper by Naruhito Shiraishi and Hitoshi

Furuta, looked at the use of fuzziness in determining

structural reliability[13]. Their method used fuzzy

mathematics to determine fuzzy probability density functions

for parameters exhibiting uncertainty. One of their
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conclusions was fuzzy probability and subjective assessment

can be merged with objective assessment in the calculation of

failure probability. They also concluded that fuzzy

probability can provide a feasible base to determine the

characteristics of correction factors.

Using Kubic and Steins idea that fuzzy sets can be used

to determine reliability factors, this study looks at using

fuzzy sets for environmental and design characteristics.

Verbal inputs describing the possibility of failure are used

for each characteristic. These inputs activate the collection

of fuzzy sets or rules to different degrees. This information

is used to determine the output fuzzy rule through an IF THEN

process. The output fuzzy rule is defuzzified and the result

is a failure rate prediction.

Using Table 5.2-9 from MIL-HDBK-217E, fuzzy rules were

designed to see how well a fuzzy failure rate prediction

method would match the failure rates given in the table. The

fuzzy failure rate prediction compared quite well to the

values found in the table. The details of this comparison are

presented in Section IV.
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The next section reviews the investigation into failure

rate prediction with a backpropagation neural network. It

starts with a brief discussion of the backpropagation

software. Then, a definition of the data used is presented.

After the data is defined, the network design is described.

Following the network design, the network training methods and

results are reviewed. The results of the training and testing

follow the network training section. Finally, some

observations about this approach and the results are

presented.



13

III. INITIAL INVESTIGATION WITH BACKPROPAGATION NEURAL

NETWORK

A. INTRODUCTION

This study was conducted to see if there was any

correlation between the number of active elements and the MTBF

for electronic equipment. Data from the report, Electronic

Equipment Reliability Data, Summer 1986, suggested a

relationship between failure rates and the number of active

elements does exist[ll]. A model was set up using a

backpropagation neural network. The model was designed to

predict the MTBF for electronic equipment based on the data

presented in the report. A commercial backpropagation computer

program, Brain Maker, from California Scientific Software was

used for the model[14].

Brain Maker is essentially a flexible neural network

shell that allows the user to define a backpropagation neural

network to meet his requirements. The user can define the

number of input and output processing elements, the type of

transfer function used by the processing elements, the

learning rate, a noise level to help avoid local minimums, the

error tolerance for training and for running the network, and

customizable displays to monitor the progress of network

training and compare the network output to the expected

output. The architecture of this network, as defined by

Simpson, is shown in Figure 1 on page 8 [10].
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B. DATA DEFINITION

The data from the report mentioned in the previous

section analyzed 406 items. The equipment was categorized by

type, and the environment in which it was employed. Further

information is given on the size of each item, the number of

active elements, the number of relevant failures, the number

of nonrelevant failures, and the number of hours of operation

over which the failures occurred.

The analysis started with 70 different items. The active

elements are categorized by 5 different classes of elements,

total number of integrated circuits, total number of tubes,

total number of discrete, and the total number of active

elements for a total of 9 different inputs for the

backpropagation network.

The output data was fielded operational MTBF values. This

was done to ensure that mature designs with proven reliability

were being used. The output values ranged from 64.5 to 504,697

hours MTBF. The total number of active elements ranged from 0

to 40,552. The size of the items and the environments they

were used in were mixed. Tabular listings of the data for

training the network are presented in Appendix A.

The data was also reduced to a 16 item subset of the

original 70 items mentioned above. This subset was composed of

items that were all used in ground based systems. The range on

MTBF and active elements was the same as the 70 item set. This

subset was created to see if environment had any effect on the

data and the networks ability to train.
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A third division of the data resulted when the items

with an MTBF of greater than 100,000 hours were removed from

the 16 item data set. This was done to see if the accuracy of

the network training could be improved. It is possible the

range of MTBF values may have been making it difficult or

impossible for the network training to converge with the

current network design. Appendix A also contains this data.

The next iteration of data sets occurred with the 14 item

data set. The log of each input value was taken along with the

log of the expected output. Again, this was done to try and

improve the error tolerance during training.

Iteration five changed all the zero's to 0.2 and

iteration six took the log of the inputs and expected outputs

in the 70 and 16 item data sets. An improved training

tolerance was again the goal. Iteration six produced the best

results.

C. NETWORK DEFINITION

The network used 9 input processing elements, the hidden

layer (layer 2) size ranged from 3 to 10 processing elements

as shown in table 1, and one output processing element was

used. The inputs were originally scaled from 0 to 1, but the

network took an extremely long time to train, if it would

train at all. Therefore, all zero inputs were changed to 0.2

which did improve the network performance. Using the 16 item

data set and varying the hidden layer size worked well with 5,

6, and 7 hidden layer processing elements. Other hidden layer
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sizes did not train as well, or to a training tolerance as low

as the 5, 6, and 7 element hidden layers. As a result, a

majority of the training runs were conducted around the 5, 6,

and 7 hidden layer sizes.

D. NETWORK TRAINING

Most of the effort on this part of the study concentrated

on training data sets. Scaling MTBF data that ranges from

approximately 65 to over 500,000 to a range of 0 to 1 requires

that the network be accurate to about 0.01 before meaningful

data can be extracted from it. This level of accuracy could

not be obtained with the data and network design used. The

lowest training tolerance achieved while still getting a

trained network in less than 20 hours (on a 33 MHz 386 PC) was

0.06. This training level was achieved with the 14 item data

sets that used the log of all inputs and the log of the

expected outputs, and the 16 item set that used the log of the

expected outputs only.

The raw data sets with zeros changed to 0.2, and scaled

between 0 and 1, were able to train to a level of 0.09.

Attempts to train these data sets to levels of 0.08 were

unsuccessful when allowed to run for 20 hours. The training

variations tried on this data are shown in Table I.
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Table I Training tolerance levels achieved.

I tJ

140.09 0.09

16 ,0.2 0.09 0.09 0.09 0.09 0.10 0.09 0.09

Item X

i{ ii i i iiiiii x x x x x x x

Item___

S.LJ. b
16 0.07 0.06 0.06 0.06 0.06

70 0.50 0.40 0.40 0.40 0.40 0.40 0.40
Item ____ 1_1_1

S.R.D. =Scaled raw data with zeros changed to 0.2.
S.L.D. =Scaled, log of expected output data with zeros

changed to 0.02.
X = Network did not train within 20 hours.
The numbers in the cells are the training tolerance levels
achieved.

E. RESULTS

Due to resource limitations, the training limit was set

at 20 hours. The 16 item data set was run for about 48 hours,

but the network did not train. This data set contained zeros

in the input data. As stated in the Network Training section,

the data that had all the zeros changed to 0.2 trained to a~
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tolerance level of 0.09 using 5 hidden neurons. This was the

lowest tolerance level the network would train to within a 20

hour training limit.

A comparison of the expected outputs and the network

outputs (in MTBF hours) obtained by presenting the 14 item

train-ng set to the network trained with the 16 item data set

is shown in Table II. The network output is converted to MTBF

hours by the equation:

(output value) * (Max - Min) + Min.

For this training set, Max = 510,000 and Min = 100. This

comparison demonstrates the need for training to a much

smaller tolerance level.

The 14 and 16 item data sets that used the log of the

expected outputs, were able to train to a tolerance of 0.06,

the lowest tolerance obtained by any ot the networks tested.

A comparison of the expected versus the network output MTBF

was obtained by presenting a 14 item training set to a network

trained with the 16 item data set. The equation for

calculating the output value is the same as the previous

output value equation with Max = 5.75 and Min = 0.0. This

comparison is shown in Table III. This data shows that

improving the training has improved some of the outputs, but

a lot of improvement is necessary to get predictions that will

be reasonably close to the actual data.
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Table II Comparison of network output to
expected output for the network
trained to an error tolerance of
0.1.

1 57.4 54659

2 29.5 40382

3 2261.7 55169

4 23.2 36303

5 116480 55169

6 2190 27124

7 122640 54149

8 25040 54149

9 1713 31714

10 1140 21516

11 337 55169

12 7280 55679

13 1151 42932

14 46592 55169

Recall Tolerance 0.10

All of the training conducted, appeared to follow a similar

paLtern. The output error would follow what appeared to be and

exponential decay to zero, or the training tolerance level, if

it trained, and to some level other than zero and fluctuate

betw'men two or three values when it wouldn't train. An example

is the error seen for the 16 item data set with scaled raw
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Table III Comparison of expected output
to network output for data sets
giving the log of the expected
output.

Input Number Expected Output__JNetwork Output

1 57.4 47918

2 29.5 2673

3 2261.7 33516

4 23.2 3303

5 116480 41424

6 2190 1030

7 122640 41976

8 25040 33963

9 1713 2781

10 1140 2466

11 337 37261

12 7280 40879

13 1151 1130

14 46592 41423

Recall 0.085
Tolerance

inputs. An error value of -0.008 was observed for one input

pair, and an error of 0.010 for the other input pair in the

same set. This was associated with input errors at the same

input neurons each time these errors would occur. This

indicates that the network is in some sort of limit cycle.

This may have been caused by getting caught in a local

minimum. The learning rate and the smoothing factor were

changed while training to see if the errors would change and
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verify local minimum conditions. No change was observed after

changing both of these parameters. It appears that the

training tolerance limit for this network and data

configuration has been found.

F. OBSERVATIONS

This study has proven that training a backpropagation

network can take an exorbitant amount of time. The

backpropagation network is very sensitive to the inputs it is

given. When raw data scaled from 0 to 1 was used, the network

could not be trained. When the zeros in the data were changed

to 0.2, the network trained very easily to a certain tolerance

level. This appears to be caused by the sigmoid transfer

functions nonlinearity near zero. When a linear transfer

function was used, the network trained with the scaled raw

data that contained zeros. Since the goal was to find a

nonlinear pattern in the data, this was not a useful transfer

function for this problem.

The network responded well to logarithmic changes to the

input data. This observation raises the question of whether a

logarithmic transfer function might not work better for this

data. The Brain Maker software did not have a logarithmic

transfer function and did not provide a way to enter a user-

defined transfer function, so tests were run with logarithmic

changes to the input data itself. This improved the results

somewhat but not nearly as much as desired. Therefore, the
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conclusion that a logarithmic transfer function would not

provide the improvement level desired was made.

The number of inputs to the network were limited to try

and bound the problem as quickly as possible. This limit may

have created some or all of the training problems experienced.

There are other variables that could be entered into the

network, and further divisions of the data could be made to

try to improve the network accuracy. In fact, after much

thought about the problem and current results, it appears

there needs to be more inputs to the network if the accuracy

of the output values are to be improved.

Adding a second hidden layer to the network may help

also. The version of Brain Maker used did not support more

than one hidden layer. Therefore, testing this variation of

the network could not be accomplished.

Finally, the ability to predict the reliability of a

system based on the number of active elements alone does not

appear to work based on the analysis performed. Some of the

changes mentioned above may make this method useful, but a

definite improvement in the training tolerance level is

needed.

The process of creating and massaging data inputs and

outputs, setting up the backpropagation network, and training

the network was becoming more work than generating a classical

reliability prediction. This problem led to a search for a

simpler aiid easier to use method of predicting failure rates.

Fuzzy-set theory provides a method to simplify inputs and
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achieve scalar results, possibly at the expense of some

accuracy.

Predicting fielded reliability data is very difficult

because one cannot foresee all the possible combinations of

factors effecting failure rates. This limitation drove the

study to a more basic component level comparison of MIL-HDBK-

217E failure predictions to those of the fuzzy model.

The rest of this study examines fuzzy-set theory as a

means to provide a simpler method of producing reliability

predictions that are accurate enough to be useful to a

reliability engineer.
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IV. THE FUZZY MODEL

The fuzzy model generates failure rate estimates for MOS,

DRAMs. The values generated are for a range of environments

listed in Appendix B, Table XII. Before the actual data is

reviewed, a discussion cf the model function is necessary.

A. FUZZY KNOWLEDGE REPRESENTATIONS

To explain how the model works, we must first look at how

the information used by the fuzzy associative memory (FAM) is

represented. Fuzzy systems directly encode structured

knowledge but in a numerical framework. Associations are

created like (Below Average, Low; Almost Low) which means, if

the environmental effect on failure rate is below average, and

the design effect on failure rate is low, then the failure

rate of the component is almost low. The associations are

stored in a FAM-rule matrix. Each entry defines a FAM rule.

These rules make up the input-output transformations[8].

The fuzzy variables are environment, design, and failure

rate. Environment and design are the input variables. Failure

rate is the output variable. The fuzzy variable environment

is defined by 10 fuzzy-sets as shown in Table IV. The fuzzy

variable, design is defined by 5 fuzzy-sets as shown in Table

V. The output fuzzy variable, failure rate, is defined by 17

fuzzy-sets as shown in Table VI. These fuzzy-sets were

defined based on natural devisions in the overall data shown

in Table XIII Appendix B. The histogram in Figure 10 of
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Appendix C provides confirmation that 17 groups or f uzzy-sets

will cover the data in the table. The matrix created by all

the possible fuzzy-set comparisons is shown in Table VII. This

matrix defines the fuzzy rules for this FAM network. Each

fuzzy rule relates the input fuzzy-sets (environment and

design) to an output fuzzy-set (failure rate).

Table IV Linguistic variables for environment effects.

.... ...... .... ...

LO Low SWAA SomeWhat Above
________ Average

SWL SomeWhat Low AA Above Average

MBA Much Below MAA Much Above
_______ Average _____ Average

BA Below Average SWH SomeWhat High

SWBA Some What Below HI High
_____________________Average I_______________ ____________________________

Table V Linguistic variables for design.

I~ate ............?.....

LO Low AA Above Average

BA Below Average HI High

11AV Average _jL
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Table VI Linguistic variables for failure rate.

EL Extremely Low AAA Almost Above
Average

LO Low SWAA SomeWhat Above
Average

SWL SomeWhat Low AA Above Average

AL Almost Low EAA Extremely Above
Average

EBA Extremely Below AH Almost High
Average

BA Below Average SWH SomeWhat High

SWBA SomeWhat Below HI High
Average

ABA Almost Below EH Extremely High
Average

AV Average

B. SHAPES OF THE FUZZY-SETS

The shapes of the fuzzy-sets define the fuzzy membership

functions for the linguistic variables that were defined in

the previous section. These shapes can vary depending on the

type of input and output variables being represented, and the

engineers knowledge and experience. In practice, fuzzy-set

values are usually defined as triangles or trapezoids over
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Table VII Matrix of FAM rules.
Design Variables

Siiii ii i~ii i i Ilii
.AL SBA WAV SAA EAA

BA ABA A.AA A.A EA.A

SW AAiiiiii!!:[:i ii:![i" !• :i:iiii~[::i::ii::i::iii•l SWBA AV AA EAA AR

• x :.<- :. :<-•< ..:.: .•-- . ...

!]!! ii•iil iiii fi! ii!i SWAA AA EAA AH HI

S...... ".,.......,....: .:..

...... ....... ............ SWH SWH SWH HLI EH

regions on the real line to simplify computations. The fuzzy-

sets used for this model are all triangular with maximum y-

axis (degree of membership) values of 1.0 and varying base

sizes as shown in Figures 2 through 7. The output fuzzy-sets

are broken into 3 figures, over the range of possible x-axis

values, for clarity.

Figure 2 shows the membership functions or fuzzy-sets for

the fuzzy variable, environment. The 0 to 10 range of x-axis

values was chosen to make developing the membership functions

easier. The ten sets resulted from dividing the data from MIL-

HDBK-217E into ten groups based on environment.

...............
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Environment Membership Functions

.0-.75

0

LO SWL MBA BA SB WAAA MAA SWH HI
o.05

0

0

8 0.25-

0 A 5 10

2.25

Figure 2 Fuzzy-Sets for Environment.

The membership functions for design are shown in Figure

3. For this model, the design variable describes the number of

bits in a dynamic ram chip. For example, average (AV)

represents the bit range of 64K to 256K. The x-axis range for

the design variable is 0 to 10. Again, the range was chosen to

make development of the membership functions easier. Five

fuzzy-sets were developed to represent the 4 ranges of bit

sizes presented in the table, plus a bit size range that

exceeds the table maximum. This bit size is commonly available

today, therefore, it was included as an estimated value.
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Design Membership Functions

"E 0.75

E
0 0. LO BA AV AA HI

"62•0.5-

0

I.I
0

0.00 5.00 10.00
Design Failure Rate Effect

E9- Low w~-- Below Average -& Average

--- Above Average -x- High

Figure 3 Fuzzy-Sets for Design.

C. BIOFAMs CORRELATION-MINIMUM INFERENCE.

FAM, introduced by Kosko in 1987, is a two layer feed

forward, hetroassociative, fuzzy classifier that stores an

arbitrary fuzzy spatial pattern pair (Ak, Bk) using fuzzy

Hebbian learning, where the kth pattern pair is represented by

the fuzzy-sets(8].

Correlation-minimum inference utilizes the max-min

composition in order to fire a FAM rule. By using BIOFAMs, we

avoid having to keep track of each fuzzy-set value for each

FAM rule in a FAM matrix.

With 10 environment, 5 design and 17 failure rate fuzzy-

sets, we would have 15 inputs and 17 outputs that would be
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tracked in a 15 x 17 matrix. This matrix would be represented

by:

M=A T-B (1)

Where A is a row vector with each element representing the

degree of membership in one of the input variables fuzzy-sets

and B is a row vector representing the degree of membership in

the output variable fuzzy-sets. M represents the matrix

created by correlation-minimum encoding where:

m,_ =min (a j, bj) (2)

Each FAM rule would require a 15 x 17 matrix of this type

making memory requirements for computer applications quite

large.

By employing BIOFAM, the virtual representation scheme is

exploited and captures the FAM matrix without physically

storing it. A BIOFAM maps system state-variables to the

desired output parameters. A BIOFAM can easily accommodate

multiple FAM-rule antecedents to map from one fuzzy space to

another and therefore, they can greatly simplify the

computations involved. A BIOFANI inference procedure activates

all of the FAM rules in parallel but at different degrees.

Then correlation-minimum is used to activate each FAM

rule[151.

For example, take a random access memory (RAM) chip. An

experienced engineer qualitatively assesses the failure rate

due to the environment it will be used in as somewhat low and

assigns it a value of 2.25 on the 0 to 10 scale. This will

activate the environment fuzzy-set SWL to degree 0.75, and the
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environment fuzzy-set MBA to degree 0.25. Similarly, if the

engineer feels the design contribution to failure rate will be

average and assigns it a value of 5.5 on the 0 to 10 scale,

the design fuzzy-set AV will be activated to degree 0.75. From

Table V, the FAM rules activated are:

FAM RULE 8: IF environment = SWL AND design : AV,
THEN failure rate = SWBA

FAM RULE 13: IF environment = MBA AND design = AV,

THEN failure rate = ABA

Figures 2 and 3 on pages 29 and 30 show the fuzzy-sets

that activate and the degree of activation for the environment

and design variables respectively. Figures 4 through 6 show

the failure rate fuzzy-sets in three sections. Figure 4 shows

the first 6 failure rate fuzzy-sets. Figure 5 shows the next

6 failure rate fuzzy-sets. And Figure 6 shows the last 5

failure rate fuzzy-sets. Figure 5 shows the failure rate

fuzzy-sets for SWBA and ABA. The degree to which the failure

rate fuzzy-sets are activated is determined through

correlation-minimum encoding[81 . Correlation-minimum encoding

compares the degree of activation of the activated fuzzy-sets

and selects the minimum value as the degree of activation for

the output fuzzy-set as defined earlier.
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Failure Rate Membership Functions

1-

a-1

-oAL EBA BA
0 EL LO SWL Continue

- Figure
0

0 0.05

Failure Rate

Figure 4 Failure Rate Fuzzy-Sets Part 1.

Failure Rate Membership Functions

0

LI

.t / Continued

:2 0.5- Next Ilm

"0 BAA A SWAA AA Fgr

A

0

0~ -

0.06 5.12 O. 8 0.24 0.3 0.36
Failure Rate

Figure 5 Failure Rate Fuzzy-Sets Part 2.
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Failure Rate Membership Functions

E0-

-o
E

0 E

0.25 1.25 2.25 . .. 25

Failure Rate

Figure 6 Failure Rate Fuzzy Sets Part 3.

CorrAelaion-Minimum Encoding with

Corr elation-Product Defuzzification
1 nvirornment De$1W Failure Rate

AA
U31.-

0

S0.5 -SWBA

a
0

SWL AV

023 3 5 7 0.0626 0.0898

Figure 7 Correlation-Product Encoding of FAw Rule 8.
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The method used to determine the degree of activation of

the failure rate fuzzy-set SWBA is shown in Figures 7 through

9. To get the degree of activation needed for defuzzification,

we need to use a combination of correlation-minimum encoding

on the input fuzzy-sets to determine the degree of activation,

and correlation-product encoding on the output fuzzy-sets to

determine the level of activation and local FAM-rule centroid.

Correlation-product encoding is discussed in the next section.

Environment Design Falure Rate

0.75

._

E
S0.5
0

- ABA
0.25

MBA AV

01

2 4 3 5 7 0.0762 1259

Figure 8 Correlation-Product Encoding of FAM Rule 13.
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Defuzzified Failure Rate Fuzzy-Sets

0.75-

E

S0.5 FUZZY CENTROIO
"0 0.0856
SSWBA

0.25.

0 E
0.06 0.07 0.08 0.09 0.1 0.11 0.12 0.13

Figure 9 Fuzzy Centroid Determination (Defuzzification).

Using correlation-minimum encoding on the input fuzzy-

sets, we get the following:

FAM RULE 8:

min ( sE• (2.25) ,mD (5.5) ) (3)

min (0o.75,0.75) =0.75

FAM RULE 13:

min (mmE (2. 25) , m~v (5. 5))()

min(0.25,0.75) =0.25

Where the superscripts E and D stand for the fuzzy variables

environment and design respectively.
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As you can see, rules 8 and 13 have been fired in

parallel but to different degrees, 0.75 and 0.25 respectively.

D. BIOFAM DEFUZZIFICATION

BIOFAMs can convert the outputs of the rules in the

previous section to scalar values through the process of

defuzzification. The two most popular defuzzification

techniques are maximum membership defuzzification and fuzzy

centroid defuzzification.

Maximum membership defuzzification selects the maximum of

all the minimum-scaled consequent FAM-rules as follows:

i
mB (FRmx) =max mB (FRl) (5)

k

Where FR represents a failure rate fuzzy-set. This equation

evaluates each failure rate fuzzy-set, mB(FRj), that has fired

and chooses the fuzzy-set with the maximum degree of

membership rB(FRaX). The degree of membership for the chosen

fuzzy-set then becomes the defuzzified scalar value.

Fuzzy centroid defuzzification directly computes the

real-valued output as the center of the fuzzy mass C:

I ym, (y) dy

Y (6)

fmC (Y) dy
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The maximum-membership defuzzification scheme has two

fundamental problems. First, the mode of the output

distribution is not unique. This affects correlation-minimum

encoding more than it does correlation-product encoding.

Second, the maximum-membership scheme ignores the information

on much of the output waveform B or failure rate. Correlation-

minimum compounds this problem because B is highly asymmetric,

even if it is unimodal. Infinitely many output distributions

can share the same mode[8].

The fuzzy centroid scheme is unique and uses all the

information in the output distribution B. For fuzzy-sets with

symmetric and unimodal distributions, the mode and fuzzy

centroid coincide. Therefore, we can replace the integrals in

the defuzzification equation with discrete sums[8]. The

resulting equation is:

YimB (.Y(7
Jji (7)

p
•. ma(Y 1 )
-'=1

The discrete sum equation requires the computation of the

local FAN-rule centroids. This is done through correlation-

product inference. Therefore, correlation-product inference

must be used to determine the activation levels of the failure

• • • i IIl IN l l
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rate fuzzy-sets. This results in a slight change from the

correlation-minimum equation as shown:

Where moi(y) is the degree of membership of y in the output

fuzzy-set Oi and wi is the fit value corresponding to the ith

output fuzzy-set.

Fuzzy centroid defuzzification is biased toward higher

numerical values. For this reason, and because of the problems

with the maximum-membership scheme, the fuzzy centroid method

of defuzzification is used here.

Now that the defuzzification method has been explained,

the example in the previous section is now completed. As

mentioned earlier, Figures 7 through 9 on pages 33, 34, and

35, show how the degree of membership of the failure rate

fuzzy-sets is determined. They also show, graphically, how

fuzzy centroid defuzzification works. The defuzzified scalar

result for this example is a failure rate of 0.0856 as shown

in Figure 9.

E. MODEL SUMMARY

Figures 7 through 9 on pages 33, 34, and 35 provide the

best summary of how the model works.

a. The computer program asks the user to enter a value

between 0 and 10 for the environment variable. The program

identifies numerical ranges for each linguistic variable as a

guide. The program then asks for a numerical value between 0
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and 10 for the design variable. Again, numerical ranges are

identified for each linguistic variable. These values entered

activate one or more fuzzy-sets for each variable, environment

and design.

b. Corre lat ion -minimum encoding is used to determine the

degree of activation for the output fuzzy-set.

c. The output fuzzy-set(s) is(are) determined from the

FAM-rule matrix based on the activated input fuzzy-sets.

d. The degree of activation obtained from correlation-

minimum encoding is used to initiate correlation-product

encoding with the output fuzzy-sets.

e. Finally the center of mass of the output fuzzy-sets

are determined and a defuzzified scalar output is generated.

This output represents the failure rate of the component under

the specified environment and design effects.

In the next section the results of the model testing are

presented. First, some earlier model designs will be

discussed. Then a review of current model results is given.

Finally, some ways to further develop this concept are

suggested.
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V. TESTING, RESULTS AND FUTURE WORK

A. EARLY MODEL DESIGN RESULTS

Mathematical manipulation of the data for this model is

not difficult, but it requires a large number of calculations.

The best way to handle these calculations is through a

computer program. The program for this model was written in

Turbo Pascal and can be found in Appendix E.

The first model tested consisted of 5 environment fuzzy-

sets, 5 design fuzzy-sets, and 5 failure rate fuzzy-sets. This

created a 25 cell matrix (25 FAM-rules) that was filled by 5

output fuzzy-sets.

The failure rate values predicted by this model were not

close enough to the values in Table XIII of Appendix B to

satisfy the author. The differences between the model outputs

and the table values were 50 percent or more of the table

values.

The fuzzy-set overlap for each of the fuzzy-variables was

varied from approximately 50 percent to zero, with little

effect. More overlap was better up to about 25 percent, but

the desired values were still showing similar differences. The

overlap of environment and design fuzzy-sets was varied

independently of failure rate also. This met with similar

results to those above, the values were not accurate enough

and there were large ranges of input values for which the

outputs remained constant.
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Changing the overlap of the fuzzy-sets changes the number

of FAM rules that fire for a given set of inputs. Different

numbers of active FAM rules results in different fuzzy

centroids and thus different output values for failure rate.

Therefore, overlap is one of the key parameters in fuzzy-set

development and the model output values obtained.

To improve the output, 9 output (failure rate) fuzzy-sets

were created to replace the original 5. This change produced

a big improvement in the output data. The output data was now

matching the data from Table XIII in Appendix B. Even though

the data was much better, there were still some areas that

needed improvement. When either one of the variables was

assigned a value in the "HI" fuzzy-set, the output would

remain at a constant value. Constant values would occur at

several input value combinations also. This led to another

analysis where the overlap and shape of the fuzzy-sets were

varied. After testing a number of iterations varying shapes

and overlap, it appeared that changing these parameters would

not achieve the desired accuracy.

Attempting to find another way to improve the accuracy of

the model, the design variable was modified to 10 fuzzy-sets

over an x-axis range of 0 to 4 megabits. The model now had 5

environment fuzzy-sets, 10 design fuzzy-sets, and 9 failure

rate fuzzy-sets. So we now have 5 x 10 or 50 possible FAM-

rules and 9 output fuzzy-sets.

This version of the model reduced the range over which

values would repeat, but did not eliminate value repetition.
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Also, the problem of repeating values when the inputs were in

the fuzzy-sets associated with the linguistic value high still

remained. This problem indicated that more output fuzzy-sets

were needed, especially for the fuzzy-sets associated with the

linguistic variable high. Therefore, another redesign of the

model occurred. For this version of the model, the inputs and

outputs were reevaluated. The input variable, environment, was

defined with 10 fuzzy-sets to better define the variation in

failure rates due to environment. Once again, the input

variable, design, was defined with 5 fuzzy-sets. This was done

to keep the model design as simple as possible and because the

bit size effects on failure rate have well defined break

points which probably do not require as much fuzzy

interpretation as the variable, environment. The output

variable, failure rate, was defined by 17 fuzzy-sets to reduce

the range of values covered by each fuzzy-set and eliminate

repeat values.

This version of the network produced values that were

very close to the expected values shown in Table XIII of

Appendix B. These results are presented in the next section.

B. CURRENT MODEL RESULTS

As mentioned in the previous section, the current model

has 10 environment fuzzy-sets, 5 design fuzzy-sets, and 17

failure rate fuzzy-sets. This version of the model produces

very good results for all but one of the environments in the

base failure rate table, Table XIII in Appendix B. Table XIV



43

in Appendix D provides a comparison of the model data to the

data in Table XIII in Appendix B.

The problem environment is cannon launch (CL). The

dynamics of this environment are, on the average, at least an

order of magnitude higher than any of the other environments

evaluated. Therefore, a less accurate estimate of the failure

rate for this environment is accepted in lieu of a more

complicated model with more fuzzy-sets.

Although this network design produced much better results

the first time it was run, than any of the previous model

designs, there was room for improvement. The main problem was

instances of repeat values for different input value

combinations. Some values were also not matching Table XIII in

Appendix B as well as desired. These problems were isolated to

values that were derived from combinations of the "AA" and

"HI" fuzzy-sets in the design variable. By adjusting the

overlap on tnese and some of the fuzzy-sets for the variable,

environment, a very good comparison betwepn the program output

and the failure rates was obtained for all environments except

cannon launch, as shown in Table XIII of Appendix B.

The values for cannon launch are not as accurate, but

they are close to the desired values. The differences are

still due mainly to the range covered by the output fuzzy-

sets. Adding more fuzzy-sets could improve the output in this

range, but it would also reduce the fuzziness of the model,

moving it more towards a discrete value association algorithm.

Adding more fuzzy-sets also makes it harder to use easily
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defined qualitative assessments. The more fuzzy-sets used, the

more an expert has to move towards a quantitative assessment

of the variable in question. For reasons mentioned in section

B of the introduction, this is an undesirable situation from

a fuzzy point of view.

C. FOLLOW-ON STUDY SUGGESTIONS

There are three areas that could be addressed in future

studies. The first is adding more dimensions or fuzzy

variables to the model. Second, adding a FAM-rule learning

mechanism that will take a basic set of rules and expand them

to fill the FAM-rule matrix. Third, this technique should be

expanded to include other component types.

By adding more dimensions or input fuzzy variables to the

model, the memory requirements for the computer model are

greatly increased because the size of the multi-dimensional

matrices that store the FAM information grow rapidly with each

dimension. One advantage to the increased size of the network

is increased FAM-rule capacity. This can lead to models with

much more accuracy and a wider range of failure rate

prediction applications. Expanded FAM matrices could also

benefit from a FAM-rule learning mechanism. Kosko discusses a

Differential Competitive Learning Algorithm for fuzzy

controllers that could be applied to this application also[81.

Another direction this study should take is applying this

method to other component types. If a network can be developed

to predict failure rates for a variety of components, the job
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of a reliability engineer during preliminary design could,

potentially, be greatly simplified.

These are just a few areas where this study could branch

and lead to a potentially useful engineering analysis tool.

The results of this study indicate it is a potentially useful

substitute method to a handbook generated prediction.
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VI. CONCLUSION

The goal of this study was to create a fuzzy system that

could predict the failure rate of an electronic component. The

component used was a dynamic RAM chip and the data for

comparison came from MIL-HDBK-217E. The results are very

encouraging.

Over a rang. of environments and RAM bit sizes, the fuzzy

model was able to predict failure rates that were reasonably

close to the values in the comparison data. This was possible

through careful development of the model fuzzy-sets.

Probably the two most important steps in the fuzzy model

development were determining the fuzzy variables, and defining

the fuzzy-sets. These elements essentially make up the model.

If they are not properly chosen and defined, the model will

not perform as desired.

Even after careful selection and definition of the model

parameters, some adjustments will probably be necessary before

the model produces the desired results. Through judicious

adjustments to the fuzzy-sets, one can achieve the required

results.

Another interesting observation concerns, the accuracy of

the model output. It was very much related to the number of

output fuzzy-sets used and requires some amount of judgement

to be used during model development. A trade off between

accuracy and simplicity is required. Increasing the number of

output fuzzy-sets improves accuracy, at the price of increased

complexity of the model. Conversely, decreasing the number of
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output fuzzy-sets simplifies the model, but may do so at the

expense of some accuracy in the model predictions.

Understanding these relationships will speed model

development.

The results of this study indicate that a fuzzy system

could very likely be developed to provide preliminary design

failure rate predictions on electronic components. This type

of system could potentially be very useful to engineers doing

preliminary design failure rate predictions. A fuzzy system

can offer an easy to use system that can quickly determine a

component failure rate under some qualitatively specified

conditions. Eliminating some of the monotonous handbook and/or

database searches.

The results of this study warrant continued development

of this application of fuzzy-set theory.



APPENDIX A.

BACKPROPATGATION DATA: TABULAR LISTINGS
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Table XII. MIL-HDBK-217E Environment abbreviation
definitions.SN h OL

GB Ground, Benign

GMS Ground, Missile Silo

GF Ground, Fixed

GM Ground, Mobile

SF Space, Flight

MP Manpack

NS Naval, Sheltered

NU Naval, Unsheltered

NUU Naval, Undersea, Unsheltered

NSB Naval, Submarine

NH Naval, Hydrofoil

AIC Airborne, Inhabited, Cargo

AIT Airborne, Inhabited, Trainer

AIB Airborne, Inhabited, Bomber

AIA Airborne, Inhabited, Attack

AIF Airborne, Inhabited, Fighter

AUC Airborne, Uninhabited, Cargo

AUT Airborne, Uninhabited, Trainer

AUB Airborne, Uninhabited, Bomber

AUA Airborne, Uninhabited, Attack

AUF Airborne, Uninhabited, Fighter

ARW Airborne, Rotary Winged

ML Missile,Launch

USL Undersea, Launch

MFF Missile, Free Flight

MFA Missile, Flight, Airbreathing

CL Cannon,Launch
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HISTOGRAM OF TABLE XIII DATA
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PROGRAM FUZZYFAILURERATEPREDICTOR (Input, Output,
Factorlist, Afunctions, Bfunctions, Rulelist,Lambda);

USES Crt;
CONST Maxfactor = 2;

Factorlsize = 10;
Factor2_size = 5;
Components = 1;
Resultsize = 17;

TYPE Component-Range = l..Components;
FactorRange = l..Maxfactor;
AxlRange = l..Factorl-size;
Ax2_Range = 1..Factor2_size;
ExRange = 1..Result size;
Factortype = ARRAY [l..Maxfactor] OF Real;
Leveltype = ARRAY [AxlRange, Ax2_Range] OF

Boolean;
Ruletype = ARRAY [Component-Range, Ax2_Range,

AxlRange] OF Integer;
Axtype = ARRAY [FactorRange, AxlRange] OF

Real;
Bxtype = ARRAY [Factor_Range, AxlRange] OF

Real;
Cxtype = ARRAY [Factor_Range, Axl_Rangel OF

Real;
Dxtype = ARRAY [FactorRange, AxlRange] OF

Real;
Extype = ARRAY [Component-Range, ExRange] OF

Real;
Fxtype = ARRAY [Component-Range, ExRange] OF

Real;
Gx_type = ARRAY [ComponentRange, ExRange] OF

Real;
Hxtype = ARRAY [ComponentRange, ExRange] OF

Real;
Aytype = ARRAY [FactorRange, AxlRange] OF

Real;
Bytype = ARRAY [Factor_Range, AxlRange] OF

Real;
Cytype = ARRAY [Factor_Range, AxlRange] OF

Real;
Dytype = ARRAY [Factor_Range, Axl_Range] OF

Real;
Eytype = ARRAY [Component-Range, ExRange] OF

Real;
Fytype = ARRAY [Component-Range, ExRange] OF

Real;
Gytype = ARRAY [Component-Range, Ex_Range] OF

Real;

Hytype = ARRAY [Component-Range, ExRange] OF
Real;
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M-type = ARRAY (FactorRange, AxlRange] OF
Real;

C-type = ARRAY [CoznponentRange, ExRange] OF
Real;

L-type -ARRAY fComponent__Range, Ex-Range] OF
Real;

VAR Ax: Ax type;
Bx: Bx-type;
Cx: Cx -type;
Dx: Dx -type;
Ay: Ay-type;
By: By~type;
Cy: Cy~type;
Dy: Dy~type;
Ex: Ex-type;
Ey: Ey~type;
Fx: Fx -type;
Fy: Fy~type;
Gx: Gx-type;
Gy: Gy~type;
Hx: Hx~type;
Hy: Hy~type;
M: M -type;
C: C-type;
L: L~type;
Lambda: Text;

FUNCTION LowerSlope (VAR Xl,Yl,X2,Y2: Real): Real;
BEGIN

IF ((Xl=X2) OR (Yl=Y2))
THEN LowerSlope :=0

ELSE LowerSlope :=Y2/(X2-Xl);

END;

FUNCTION UpperSlope (VAR X3,Y3,X4,Y4: Real): Real;
BEGIN

IF ((X3=X4) OR (Y3=Y4))
THEN UpperSlope := 0
ELSE UpperSlope :z Y3/(X3-X4);

END;

FUNCTION Lowerlnt (VAR X1,Yl,X2,Y2: Real): Real;
BEGIN

IF (Yl = Y2)
THEN Lowerlnt := Y1
ELSE IF (X1=X2)

THEN Lowerlnt :=100000

ELSE Lowerlnt :=-(Y2/(X2-Xl)) * X1;
END;
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FUNCTION UpperInt (VAR X3,Y3,X4,Y4: Real): Real;
BEGIN

IF (Y3=Y4)
THEN UpperInt := Y3
ELSE IF (X3=X4)

THEN UpperInt := 100000
ELSE UpperInt := -(Y3/(X3-X4)) * X4;

END;

FUNCTION Max (VAR q, r: Real): Real;
BEGIN

IF q >= r
THEN

Max q
ELSE

Max :=q;
END;
(********************************************************* )

FUNCTION Min (VAR s,t: Real): Real;
BEGIN

IF s > t
THEN Min := t
ELSE Min := s;

END;

FUNCTION Traparea (VAR Xl,Yl,X2,Y2,X3,Y3,X4,Y4: Real):
Real;

BEGIN
Trap-area := ((X2-Xl)*(Y2-YI))+((Y2-YI)*(X3-X2));

END;

{**********************************************************1*

PROCEDURE GetFailureRateFactors (VAR fact: Factor-type);

VAR Maxfact,i, b: Integer;
factor: ARRAY [l..Maxfactor] OF String[22];
Factorlist: Text;

BEGIN
ASSIGN (Factorlist, 'factors.lst');
RESET (Factorlist);
BEGIN {Getting the list of factors to consider.)

FOR i := 1 TO Maxfactor DO
BEGIN

Readln(Factorlist, factor[i]);
END;

END;
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[START Getting the factor values.)
FOR b := 1 TO Maxfactor DO

IF (b = 1)
THEN BEGIN

Writeln ('Enter a ',factor[b],' factor value
from 0.000 and 10.000.');

Writeln ('0.000 - 2.000 = Low');
Writeln ('1.000 - 3.000 = Somewhat Low');
Writeln ('2.000 - 4.000 = Much Below Average');
Writeln ('3.000 - 5.000 = Below Average');
Writeln ('4.000 - 6.000 = Somewhat Below

Average');
Writeln ('5.000 - 7.000 = Somewhat Above

Average');
Writeln ('6.000 - 8.000 = Above Average');
Writeln ('7.000 - 9.000 = Much Above Average');
Writeln ('8.000 - 10.000 = Somewhat Highe');
Writeln ('9.000 - 10.000 = High');
Readln (fact[b]);
Write('Fact ',b,' = ',fact[b]:2:3);
Writeln;

END
ELSE BEGIN

Writeln ('Enter a ',factor[b],' factor value
from 0.000 and 10.000.');

Writeln ('0.000 - 2.000 = Little');
Writeln ('2.000 - 4.000 = Below Average');
Writeln ('4.000 - 6.000 = Average');
Writeln ('6.000 - 8.000 = Above Average');
Writeln ('8.000 - 10.000 = Very');
Readln (fact[b]);
Write('Fact ',b,' = ',fact[b]:2:3);
Writeln;

END;
Close (Factorlist);

END;

(**********************************************************}*
PROCEDURE DefineMembershipFunctions (VAR Ax: Axtype;

VAR Bx: Bx_type;
VAR Cx: Cx_type;
VAR Dx: Dx_type;
VAR Ay: Ay_type;
VAR By: By_type;
VAR Cy: Cy_type;
VAR Dy: Dy_type);

VAR i,j,Factorsize: Integer;
Afunctions: Text;
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BEGIN
Assign (Afunctions, 'Afunct.dat');
Reset (Afunctions);

FOR i := 1 TO Maxfactor DO
BEGIN

Readin (Afunctions);
IF (i = 1)
THEN Factor-size Factori-size
ELSE Factor-size Factor2_size;

FOR j := 1 TO Factor_size DO
BEGIN

Read (Afunctions, Axfi,jD);
Read (Afunctions, Ay[i,j]);
Read (Afunctions, BxI~i,j]);
Read (Afunctions, By[i,j]);
Read (Afunctions, Cx[iljI);
Read (Afunctions, Cy[i,j]);
Read (Afunctions, Dxti,jj);
Read (Afunctions, Dy[i,j]);
Readin (Afunctions);

END; (FOR)
END; (FOR)

Close (Afunctions);
END; (Procedure: DefineMernbershipFunctions)

PROCEDURE CalculatejnputMernbershipFunctions
(VAR M: M-type;
VAR Ax: Ax-type;
VAR Bx: Bx-type;
VAR Cx: Cx-type;
VAR Dx: Dx-type;
VAR Ay: Ay~type;
VAR By: By~type;
VAR Cy: Cy~type;
VAR Dy: Dy~type;
VAR fact: Factor-type);

VAR i,j,k,Factor-size: Integer;

BEGIN
FOR i := 1 TO Maxfactor DO

BEGIN
IF (i = 1)

THEN Factor-size Factori-size
ELSE Factor-size :=Factor2_size;

FOR j := 1 TO Factor-size DO
BEGIN

IF (fact~iI <= AxI~i,j))

ELSE IF ((fact[iI > Ax[i,j]) AND (fact[i] <=
Bx [ i1 i))
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THEN M[i,j]
((fact[i]*LowerSlope(Ax[i,j],Ay[i,i],
Bx[i,jh, ByI~i,jI)) + Lowerlnt(Ax[i,j],
Ay~i,j] , BxI~i,j] ,By[i,j])

ELSE IF ((fact~il > Bx~i,jI) AND (fact~iI <=
Cx [i, i])

THEN M[i,j] :
((fact (ii*LowerSlope(Bx~i, 5],
By [i1 I,j]Cx [i, iI, CyIi, j )) +
Lowerlnt(Bx[i,.j],By[i,j],
Cx f i, 5 ,Cy [i, 51

ELSE IF ((fact[iI > Cx[i,j]) AND (factijl
<= Dx[i,jI))

THEN M[i,j] :
(fact li] *UpperSlope (Cx Ii, ii.

Cy [iijI, Dx [i.5] ,Dy [i,j]))
+Upperlnt(Cx~i~jI ,Cyli,jI,
Dx (i,j51, Dy IIi,j5 1

ELSE IF (fact~ii > DxI~i,j])
THEN M[i,j] := DyI~i,j];

END; (FOR j)
END; (FOR i)

END;

PROCEDURE Read_Component-MembershipFUflCt ions
(VAR Ex: Ex -type;
VAR Ey: Ey-type;
VAR Fx: Fx -type;
VAR Fy: Fy-type;
VAR Gx: Gx_ty~pe;
VAR Gy: Gy_type;
VAR Hx: Hx-type;
VAR Hy: Hy_type);

VAR i,j: Integer;
Bfunctions: Text;

BEGIN
ASSIGN (Bfunctions, 'bfunct.dat');
RESET (Bfunct ions);

FOR i :=1 TO Components DO
BEGIN

Readin (Bfunctions);
FOR j := 1 TO Result_size DO

BEGIN
Read (Bfunctions, Ex[i,jI);
Read (Bfunctions, Ey[i,jI);
Read (Bfunctions, Fx[i,jl);
Read (Btunctions, FyI~i,jI);
Read (Efunctions, Gx[i,j]);
Read (Bfunctions, Gy~i,jI);



69

Read (Efunctions, Hx[i,j]);
Read (Bfunctions, Hytli,jl);
Readin (Bfunctions);

END; (FOR j)
END; fF'OR i}

Close (Bfunctions);
END; (Procedure: Read.-Component MembershipFunctions)

PROCEDURE CalculateAreas-andCenters (VAR Ex: Ex-type;
VAR Ey: Ey~type;
VAR Fx: Fx-type;
VAR Fy: Fy~type;
VAR Gx: Gx-type;
VAR Gy: Gy~type;
VAR Hx: Hx-type;
VAR Hy: Hy_type;
VAR C: C-type;
VAR L: L_type);

VAR i,j,k: Integer;

BEGIN
FOR i := 1 TO Components DO;

BEGIN
FOR j := 1 TO Result-size DO

BEGIN
L~i,j] := Trap area(Ex(i,jI ,Ey~i,jJ,

FxLi, i],Fy Li, j 1, GxLi, i],Gy Li,i],
Hx Li, j)I,Hy Li,j] ;

IF (Fx[i,j] = Gx[i,j])
THEN CLi,j] :z Fx~i,j]
ELSE C~i,j] ::z (Ex~i,j] + Hxfi,jJ)/2;

END;.
Writein;

END;
END; (Calculate_Areas_andCenters}

PROCEDURE ReadRules (VAR Rule: Rule~type);

VAR i,j,k: Integer;
Rulelist: Text;

BEGIN
ASSIGN (Rulelist, 'Rules.lst');
RESET (Rulelist);
Readln(Rulelist);
FOR k := 1 TO Components DO

BEGIN
FOR i := 1 TO Factor2_size DO

BEGIN
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FOR I TO Factori-size DO
BEGIN

Read(Rulelist, Rule~ik,i,j])
{ ~~Write('Rule[',k,i,i,']=',Rule~k,i,j], ''h

END;
Readln(Rulelist);

END;
END;

Close(Rulelist);
END;

PROCEDURE CalculateFailure_Rate_Factor
(VAR Rule: Rule~type;
VAR M: M-type;
VAR L: L-type;
VAR C: C-type;
VAR Lambda: Text);

VAR i,j,k,n,p: Integer;
Nochange: Boolean;
Degree,RuleArea,Center,Centroid,Num,Denom,X2,X3: Real;

BEGIN
Num. : 0;
Denom :=0;
FOR k 1 TO Components DO

BEGIN
FOR i := 1 TO Factor2_size DO

BEGIN
FOR j := 1 TO Factori_size DO

BEGIN
IF ((MII1,j] > 0) AND (M112,i]l > 0))
THEN

BEGIN

Degree :=Min(MI~l,j],MI2,i]);

RuleArea :=L[k,n];

Center :~C[k,n];
Num :-Num + Degree*

RuleArea *Center;
Denomn: Denom + Degree*

RuleArea;
END

ELSE Nochange :=True;

END; (FOR j)
END; (FOR i)

END; (FOR k)
Writein;
Writeln('Num=',Num:2:4);
Writeln('Denorn=',Denom:2:4);
Writeln('Degree=',Degree:2:4);
Centroid := Num/Denom;
Writeln('The Failure Rate Factor is: ',Centroid:2:4);
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Write(Lambda,'Degree=',Degree:2:4,' )

Write (Lambda,'Failure Rate = ',Centroid:2:4);
Writein;

END;

PROCEDURE CreateOutputFile (VAR fact: Factor~type;
VAR Lambda: TEXT);

VAR Level: Level~type;
Rule: Rule-type;

CONST q = 1;
r = 2;
stepq =1;
stepr = 1

BEGIN
Assign (Lambda, 'LambdaG.DAT');
Append (Lambda);
fact[q] := 0;

While fact[qj < 10 DO
BEGIN

fact[qJ : fact[q] + stepq;
fact[r] : 0;
While fact[r] < 10 DO

BEGIN
factlir] := factlirl + stepr;
Write (Lambda, 'fact[',q,'1=',factflq]:2:2,/

f', factll',r, 'I=',fact[rI :4:2,' ');

Define_-MembershipSunctions
(Ax,' Bx, Cx, Dx, Ay, By, Cy, Dy);

Read_-ComponentMembershipFunctions
(Ex,Ey,Fx,Fy,Gx,Gy,Hx,Hy);

CalculatejInput_-Membership_Functions
(M, Ax, Bx, Cx, Dx, Ay, By ,Cy, Dy, fact);

CalculateAreas-andCenters
(Ex, By, Fx, Fy, Gx, Gy, Hx, Hy, C, L);

Read_-Rules(Rule);
CalculateFailure_RateFactor

(Rule,M,L,C,Lambda);
Writeln(Lambda);

END; (While r)
Writeln(Lambda);

END; (While q)
Close (Lambda);

END; (CreateOutputFile}
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VAR (Level: Level~type;}
Rule: Rulle~type;
fact: Factor-type;

BEGIN (Determining the factor values.)
{ CreateOutputFile(fact,Lambda); )
Assign (Lambda, 'Larnbdag.dat');
Append (Lambda);
GetFailure_-RateFactors (fact);
Define_-MembershipFunctions (Ax,Bx,Cx,Dx,Ay,By,Cy,Dy);
ReadComponentMembershipFunctions

(Ex,Ey,Fx,Fy,Gx,Gy,Hx,Hy);
CalculatejInput_-MembershipFunctions

(M, Ax, Bx, Cx, Dx, Ay, By, Cy, Dy, fact);
CalculateAreas-andCenters

(Ex,Ey,Fx,Fy,Gx,Gy,Hx,Hy,C,L);
Read_-Rules(Rule);
CalculateFailureRateFactor (Rule,M,L,C,lambda);

END.
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DATA FILES USED BY THE MODEL
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X, Y coordinate definitions of membership functions

Environment Membership Function Definitions (AFUNCT.DAT)
Ax Ay Bx By Cx Cy Dx Dy

LO 00.00 0.00 01.00 1.00 01.00 1.00 02.00 0.00
SWL 01.00 0.00 02.00 1.00 02.00 1.00 03.00 0.00
MBA 02.00 0.00 03.00 1.00 03.00 1.00 04.00 0.00
BA 03.00 0.00 04.00 1.00 04.00 1.00 05.00 0.00
SWBA 04.00 0.00 05.00 1.00 05.00 1.00 06.00 0.00
SWAA 05.00 0.00 06.00 1.00 06.00 1.00 07.00 0.00
AA 06.00 0.00 07.00 1.00 07.00 1.00 08.00 0.00
MAA 07.00 0.00 08.00 1.00 08.00 1.00 09.00 0.00
SWH 08.00 0.00 09.00 1.00 09.00 1.00 10.00 0.00
HI 09.00 0.00 10.00 1.00 10.00 1.00 10.00 1.00

Design Membership Function Definitions (AFUNCT.DAT)
LO 00.00 1.00 00.00 1.00 00.00 1.00 02.50 0.00
BA 01.00 0.00 03.00 1.00 03.00 1.00 05.00 0.00
AV 03.00 0.00 05.00 1.00 05.00 1.00 07.00 0.00
AA 05.50 0.00 07.50 1.00 07.50 1.00 09.50 0.00
HI 07.50 0.00 10.00 1.00 10.00 1.00 10.00 1.00

Failure Rate Membership Function Definitions (BFUNCT.DAT)
Ex Ey Fx Fy Gx Gy Hx Hy

EL 0.00000 0.00 0.01635 1.00 0.01635 1.00 0.03270 0.00
LO 0.01635 0.00 0.02945 1.00 0.02945 1.00 0.04255 0.00
AL 0.02945 0.00 0.04065 1.00 0.04065 1.00 0.05185 0.00
SWL 0.04065 0.00 0.04805 1.00 0.04805 1.00 0.05545 0.00
EBA 0.04805 0.00 0.05680 1.00 0.05680 1.00 0.06555 0.00
BA 0.05680 0.00 0.06260 1.00 0.06260 1.00 0.06840 0.00
SWBA 0.06260 0.00 0.07620 1.00 0.07620 1.00 0.08980 0.00
ABA 0.07620 0.00 0.10105 1.00 0.10105 1.00 0.12590 0.00
AV 0.10105 0.00 0.12990 1.00 0.12990 1.00 0.15875 0.00
AAA 0.12990 0.00 0.16040 1.00 0.16040 1.00 0.19090 0.00
SWAA 0.16040 0.00 0.20530 1.00 0.20530 1.00 0.25020 0.00
AA 0.20530 0.00 0.28745 1.00 0.28745 1.00 0.36960 0.00
EAA 0.28745 0.00 0.51690 1.00 0.51690 1.00 0.74635 0.00
AH 0.51690 0.00 1.00855 1.00 1.00855 1.00 1.50020 0.00
SWH 1.00855 0.00 1.71095 1.00 1.71095 1.00 2.41335 0.00
HI 1.71095 0.00 2.45000 1.00 2.45000 1.00 3.20955 0.00
EH 2.45000 0.00 3.30000 1.00 3.30000 1.00 4.15000 0.00

FAM RULES (RULES.LST)
LO SWL MBA BA SWBA SWAA AA MAA SWH HI

LO 01 04 03 04 06 07 08 11 12 15
BA 02 06 06 07 08 09 10 12 13 15
AV 05 07 08 09 10 12 12 13 14 15
AA 08 08 31 11 12 13 13 14 35 16
HI 11 ]1 12 13 13 14 14 16 17 17
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